Representing Congruence Lattices of Lattices with Partial Unary Operations as Congruence Lattices of Lattices. I. Interval Equivalence
نویسنده
چکیده
Let L be a bounded lattice, let [a, b] and [c, d] be intervals of L, and let φ : [a, b] → [c, d] be an isomorphism between these two intervals. Let us consider the algebra L↔ φ = 〈L;∧,∨, φ, φ−1〉, which is a lattice with two partial unary operations. We construct a bounded lattice K (in fact, a convex extension of L) such that the congruence lattice of L↔ φ is isomorphic to the congruence lattice of K, and extend this result to (many) families of isomorphisms. This result presents a lattice K whose congruence lattice is derived from the congruence lattice of L in a novel way.
منابع مشابه
Representing Congruence Lattices of Lattices with Partial Unary Operations as Congruence Lattices of Lattices. Ii. Interval Ordering
In Part I of this paper, we introduced a method of making two isomorphic intervals of a bounded lattice congruence equivalent. In this paper, we make one interval dominate another one. Let L be a bounded lattice, let [a, b] and [c, d] be intervals of L, and let φ be a homomorphism of [a, b] onto [c, d]. We construct a bounded (convex) extension K of L such that a congruence Θ of L has an extens...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملFUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملExpansions of finite algebras and their congruence lattices
In this paper we present a novel approach to the construction of new finite algebras and describe the congruence lattices of these algebras. Given a finite algebra 〈B, . . .〉, let B1, B2, . . . , BK be sets which intersect B at specific points. We construct an overalgebra 〈A,FA〉, by which we mean an expansion of 〈B, . . .〉 with universe A := B ∪ B1 ∪ · · · ∪ BK , and a certain set FA of unary o...
متن کامل